An experimental study of the temperature-dependent DNA elasticity using optical tweezers
نویسندگان
چکیده
Temperature plays a key role in all biological processes. Slight changes of temperature may lead to completely different behaviors of biological systems. In fact, living matter carry out its function in a small range of temperature. Therefore, it is interesting to study and understand what is the effect of temperature in biological systems. Single-stranded DNA (ssDNA) is one of the most relevant molecules in biological processes, providing us an excellent scenario to understand how the temperature affect its properties. In this project we aim to understand and characterize the elastic response of ssDNA at different temperatures. We have used the Laser Optical Tweezers (LOT) technique in order to measure the Force-Distance Curves (FDC) of ssDNA under the effect of a mechanical force at different temperatures. By fitting the stretching response of ssDNA to two semiflexible polymer models we have obtained the temperature dependence of the elastic parameters. We have found that persistence length and Kuhn length increase with temperature while the stretching modulus seems to be insensitive to temperature changes. Finally, we have found that the persistence length is proportional to the Debye screening length and that it varies with temperature according to a power law with exponent < 1.
منابع مشابه
measuring viscoelastic properties of Red Blood Cell using optical tweezers
Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...
متن کاملA Temperature-Jump Optical Trap for Single-Molecule Manipulation.
To our knowledge, we have developed a novel temperature-jump optical tweezers setup that changes the temperature locally and rapidly. It uses a heating laser with a wavelength that is highly absorbed by water so it can cover a broad range of temperatures. This instrument can record several force-distance curves for one individual molecule at various temperatures with good thermal and mechanical...
متن کاملCombining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
We present the first results obtained with a new instrument designed and built to study DNA-protein interactions at the single molecule level. This microscope combines optical tweezers with scanning probe microscopy and allows us to locate DNA-binding proteins on a single suspended DNA molecule. A single DNA molecule is stretched taut using the optical tweezers, while a probe is scanned along t...
متن کاملStretching DNA with optical tweezers.
Force-extension (F-x) relationships were measured for single molecules of DNA under a variety of buffer conditions, using an optical trapping interferometer modified to incorporate feedback control. One end of a single DNA molecule was fixed to a coverglass surface by means of a stalled RNA polymerase complex. The other end was linked to a microscopic bead, which was captured and held in an opt...
متن کاملSingle Chromatin Fibre Assembly Using Optical Tweezers
Here we observe the formation of a single chromatin fibre using optical tweezers. A single λ -DNA molecule was suspended between two micron-sized beads, one held by a micropipette and the other in an optical trap. The constrained DNA molecule was incubated with Xenopus laevis egg extract in order to reconstitute a single chromatin fibre. An eight-fold compaction of the DNA molecule was observed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014